Number of solutions of $\sqrt {\tan \theta }  = 2\sin \theta ,\theta  \in \left[ {0,2\pi } \right]$ is equal to 

  • A

    $2$

  • B

    $4$

  • C

    $5$

  • D

    $6$

Similar Questions

If $\alpha ,\,\beta ,\,\gamma $ and $\delta $ are the solutions of the equation $\tan \left( {\theta  + \frac{\pi }{4}} \right) = 3\,\tan \,3\theta $ , no two of which have equal tangents, then the value of $tan\, \alpha  + tan\, \beta + tan\, \gamma + tan\, \delta $ is

If $(1 + \tan \theta )(1 + \tan \phi ) = 2$, then $\theta + \phi  =$ ....$^o$

General solution of $\tan 5\theta = \cot 2\theta $ is  $($ where $n \in Z )$

If equation in variable $\theta, 3 tan(\theta -\alpha) = tan(\theta + \alpha)$, (where $\alpha$ is constant) has no real solution, then $\alpha$ can be (wherever $tan(\theta - \alpha)$ & $tan(\theta + \alpha)$ both are defined)

If $\sin \theta  + 2\sin \phi  + 3\sin \psi  = 0$ and $\cos \theta  + 2\cos \phi  + 3\cos \psi  = 0$ , then the value of $\cos 3\theta  + 8\cos 3\phi  + 27\cos 3\psi  = $